Ballistic intracellular nanorheology reveals ROCK-hard cytoplasmic stiffening response to fluid flow.
نویسندگان
چکیده
Cells in vivo are constantly subjected to mechanical shear stresses that play important regulatory roles in various physiological and pathological processes. Cytoskeletal reorganizations that occur in response to shear flow have been studied extensively, but whether the cytoplasm of an adherent cell adapts its mechanical properties to respond to shear is largely unknown. Here we develop a new method where fluorescent nanoparticles are ballistically injected into the cells to probe, with high resolution, possible local viscoelastic changes in the cytoplasm of individual cells subjected to fluid flow. This new assay, ballistic intracellular nanorheology (BIN), reveals that shear flow induces a dramatic sustained 25-fold increase in cytoplasmic viscosity in serum-starved Swiss 3T3 fibroblasts. By contrast, cells stimulated with the actin contractile agonist LPA show highly transient stiffening of much lower amplitude, despite the formation of similar cytoskeletal structures. Shear-induced cytoplasmic stiffening is attenuated by inhibiting actomyosin interactions and is entirely eliminated by specific Rho-kinase (ROCK) inhibition. Together, these results show that biochemical and biophysical stimuli may elicit the formation of qualitatively similar cytoskeleton structures (i.e. stress fibers and focal adhesions), but induces quantitatively different micromechanical responses. Our results suggest that when an adherent cell is subjected to shear stresses, its first order of action is to prevent detachment from its substratum by greatly stiffening its cytoplasm through enhanced actin assembly and Rho-kinase mediated contractility.
منابع مشابه
Probing cellular mechanical responses to stimuli using ballistic intracellular nanorheology.
We describe a new method to measure the local and global micromechanical properties of the cytoplasm of single living cells in their physiological milieu and subjected to external stimuli. By tracking spontaneous, Brownian movements of individual nanoparticles of diameter>or=100 nm distributed within the cell with high spatial and temporal resolutions, the local viscoelastic properties of the i...
متن کاملRelationship between fracture dip angle, aperture and fluid flow in the fractured rock masses
Most of the Earth's crust contains fluids, and fractures are common throughout the upper part. They exist at a wide range of scales from micro-fractures within grains to major faults and shear zones that traverse the crust. In this paper, the stress-dependent permeability in fractured rock masses have been investigated considering the effects of nonlinear normal deformation and shear dilation o...
متن کاملMicrorheology and ROCK signaling of human endothelial cells embedded in a 3D matrix.
Cell function is profoundly affected by the geometry of the extracellular environment confining the cell. Whether and how cells plated on a two-dimensional matrix or embedded in a three-dimensional (3D) matrix mechanically sense the dimensionality of their environment is mostly unknown, partly because individual cells in an extended matrix are inaccessible to conventional cell-mechanics probes....
متن کاملPillar Design in the Hard Rock Mines of South Africa
This paper gives an overview of the difficulties associated with the design of hard rock pillars in South African mines. Recent examples of large scale pillar collapses in South Africa suggest that these were caused by weak partings which traversed the pillars. Currently two different methods are used to determine the strength of pillars, namely, empirical equations derived from back analyses o...
متن کاملIntracellular Fluid Mechanics: Coupling Cytoplasmic Flow with Active Cytoskeletal Gel
The cell is a mechanical machine, and continuum mechanics of the fluid cytoplasm and the viscoelastic deforming cytoskeleton play key roles in cell physiology.We reviewmathematicalmodels of intracellular fluidmechanics, from cytoplasmic fluid flows, to the flow of a viscous active cytoskeletal gel, to models of two-phase poroviscous flows, to poroelastic models. We discuss application of these ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 119 Pt 9 شماره
صفحات -
تاریخ انتشار 2006